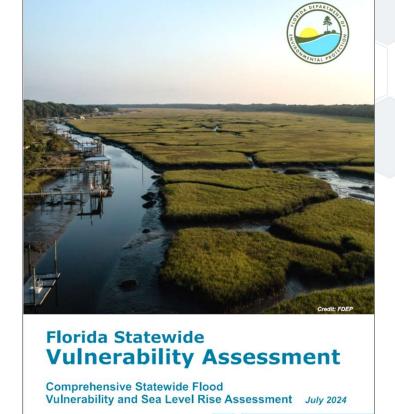
Nature-Based Solutions for Coastal Management

CUMMINS | **CEDERBERG** Coastal & Marine Engineering

GSAC 3rd Annual Water Forum:

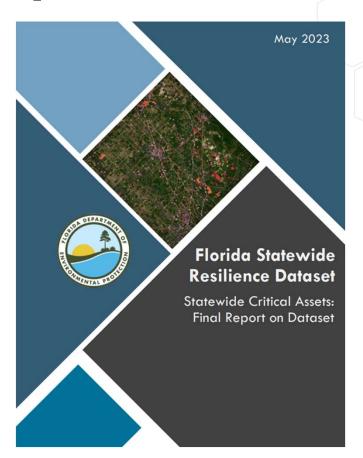
Building Naples Coastal Resiliency

February 25, 2025


Jenna N. Phillips, MSc, WEDG Senior Director

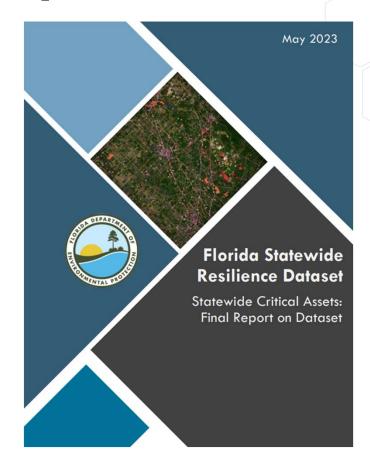
Resilient Florida Program

Since May 2021, s. 380.093, F.S., a comprehensive and coordinated approach to local and statewide resilience.

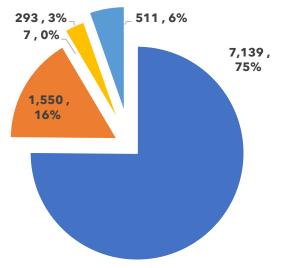

- Vulnerability of Critical Assets to floods from high tides, SLR, storm surge, rainfall, and compound flooding
- New VA's to comply with NOAA 2022 SLR Intermediate-Low and Intermediate curves
- Planning horizons updated to 2050 & 2080
- Grant Funding Opportunities
 - Planning grants (VA's, APs, Peril of Flood Comp Plan Amendments, <u>SWMPs and WMPs</u> consistent with NFIP CRS program)
 - 2. Feasibility studies and permitting for NBS that reduce impacts to flooding and SLR
 - 3. Implementation Grants

Statewide Critical Asset Inventory

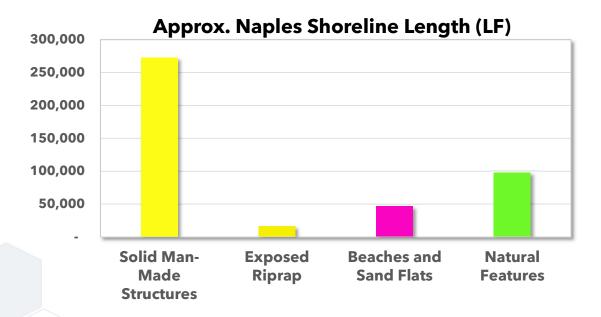
- 1. Transportation and Evacuation Routes
- 2. Critical Infrastructure
- 3. Critical Community and Emergency Facilities
- 4. Natural, Cultural, and Historical Resources:
 - Conservation Lands and Parks
 - Shorelines
 - Surface Waters and Wetlands
 - Historical and Cultural Assets



Statewide Critical Asset Inventory


- 1. Transportation and Evacuation Routes
- 2. Critical Infrastructure
- 3. Critical Community and Emergency Facilities
- 4. Natural, Cultural, and Historical Resources:
 - Conservation Lands and Parks
 - Shorelines our first line of defense!
 - Surface Waters and Wetlands
 - Historical and Cultural Assets

Shoreline locations and type classifications were sourced from **Florida Fish and Wildlife Conservation Commission** (FWC) Environmental Sensitivity Index (ESI).


FWC Shoreline Statewide Dataset

- Marsh, wetlands, swamp
- Man-made structures and riprap
- Rocky shore and banks, wave-cut platforms, scarps
- Tidal flats, mud flats, vegetated low banks
- Beaches (sand, sandy slopes and scarps, gravel and mixed beaches)

FWC Shoreline Classification	Sum of Shape Length	Miles
10A/10D: Salt- and brackish- water marsh/Scrub-shrub wetlands	728,682	138.01
10A: Salt- and brackish- water marsh	15,170,964	2,873.29
10B: Freshwater marsh	1,202,036	227.66
10C: Swamps	4,803,475	909.75
10D: Scrub-shrub wetlands	15,788,079	2,990.17
1A: Exposed rocky shores; Exposed rocky banks	939	0.18
1B: Exposed, solid man-made structures	536,602	101.63
2A: Exposed wave-cut platforms in bedrock, mud, or clay	6,302	1.19
2B: Exposed scarps and steep slopes in clay	35	0.01
3A: Fine- to medium- grained sand beaches	1,514,572	286.85
3B: Scarps and steep slopes in sand	1,560	0.30
4: Coarse-grained sand beaches	591,544	112.03
5: Mixed sand and gravel beaches	589,441	111.64
6A: Gravel beaches	1,453	0.28
6B: Exposed riprap	467,727	88.58
7: Exposed tidal flats; Sand flats	508,290	96.27
8A: Sheltered rocky shores and sheltered scarps in bedrock, mud, or clay	28,717	5.44
8B: Sheltered solid man-made structures	6,919,631	1,310.54
8C: Sheltered riprap	259,431	49.13
9A: Sheltered tidal flats; Mud flats	23,172	4.39
9B: Vegetated low banks	1,016,315	192.48
9C: Hypersaline tidal flats	1,215	0.23
Grand Total	50,160,181	9,500

City of Naples FWC Shoreline Data

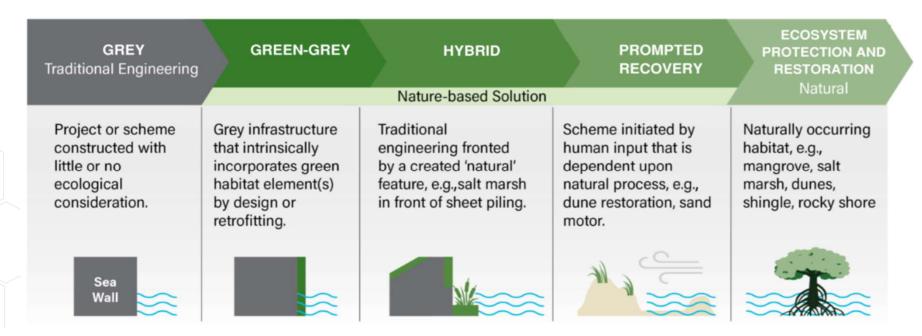
Total Shoreline Length in Naples = 433,777 LF (~82 miles)

Traditional Approaches

Seawalls / bulkheads

- Protection from:
 - Wave energy
 - Shoreline erosion
 - Tidal flooding
 - Storm surge

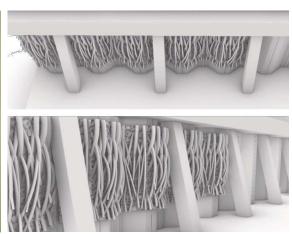
Upside:


- Easy to permit
- Known installation practices
- Contractor knowledge
- Low maintenance

Downside:

- Expensive to build and maintain
- Reflect wave energy rather than dissipate it
- Cause scour, offsite erosion
- Can be unattractive
- Disturb habitat
- Alter sediments flow

- Our future will be wet and stormy... shorelines are first line of defense
- Balance resilience, ecology, and access
- Funding sources available, especially for nature-based solutions
- Create habitat, provide ecosystem services, dissipate wave energy
- Can cost less to implement than traditional methods
- Less familiarity with contractors and permitting



Living Shoreline Types/Applications

Ecological Enhanced Seawall

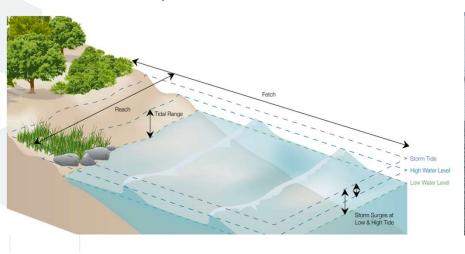
Examples of Typical Living Shorelines

Design Considerations

Wave Loads

Overtopping

Currents


Scour

Storm Surge

Site Selection

- Upland space, use, and functionality
- Length of shoreline
- Existing marine resources
- Water depth
- Wave exposure

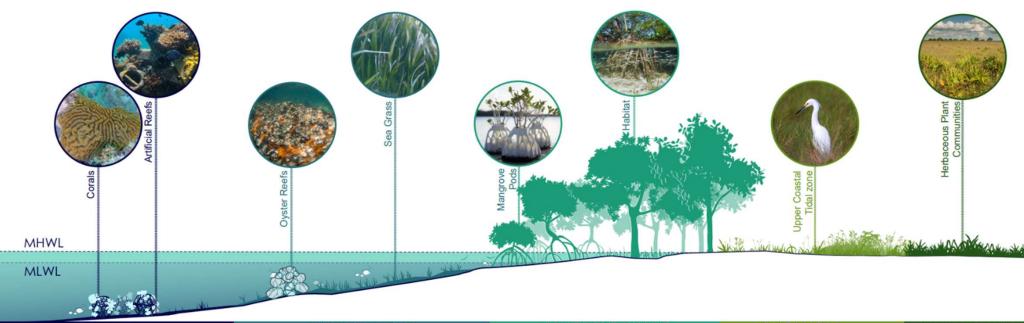
62-330.051(12) - Other Shoreline Stabilization (Exemption)

- Should include mostly native wetland plants
- Can include oyster reefs, coir, rock sill/breakwater
- Cannot extend more than 10' from MHW
- Cannot exceed 500' along shore
- Minimum discharge of fill / size
- Requires maintenance, periodic repair
- Breakwater opening every 75' for flow of water & movement of fish/wildlife

All others get an Individual Permit.

62-330.631 - Gov't Entities, Limited Restoration/Enhancement (General Permit)

- Cannot extend more than 15' from MHW
- Not in Aquatic Preserve or w/in 3' of SAV with 1% cover


62-330.632 - Low Profile Oyster Habitat (General Permit)

- Less than 0.25 acres total footprint,
- No work w/in 100 m of wading bird colonies, 180 m of tern / skimmer colonies, 100 ft from marked channel
- Clean, sediment free cultch, quarantined recycled shell, fossil shell, limerock w/20%+ calcium carbonate, concrete
- Fixed on substrate or bagged, Max ht. 18" from bottom, below MHW

Policy and Regulatory Challenges

CUMMINS | CEDERBERG Coastal & Marine Engineering

- State preference for upland excavation (upland of MHWL)
- Local government "no net loss" of public land
- Mangroves regulated two different ways
 - Trimming & Preservation Act and Environmental Resource Permit (subject to conditions)
 - Mangroves planted along MHWL trigger Sovereign Submerged Lands

SUBTIDAL ZONE INTERTIDAL ZONE MANGROVE SWAMP SALT MARSH MARSH PRAIRIES

Case Studies

Dinner Key Breakwaters Mitigation

Miami
Beach Living
Shorelines

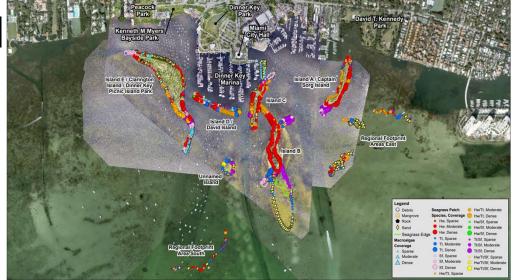
Jose Marti Park Adaptive Redesign

Currie Park Adaptive Redesign

Dinner Key Breakwaters Mitigation

Unique Site: Historic seaport, spoil islands created as part of federal project.

Marina destroyed in 2017 Hurricane Irma.

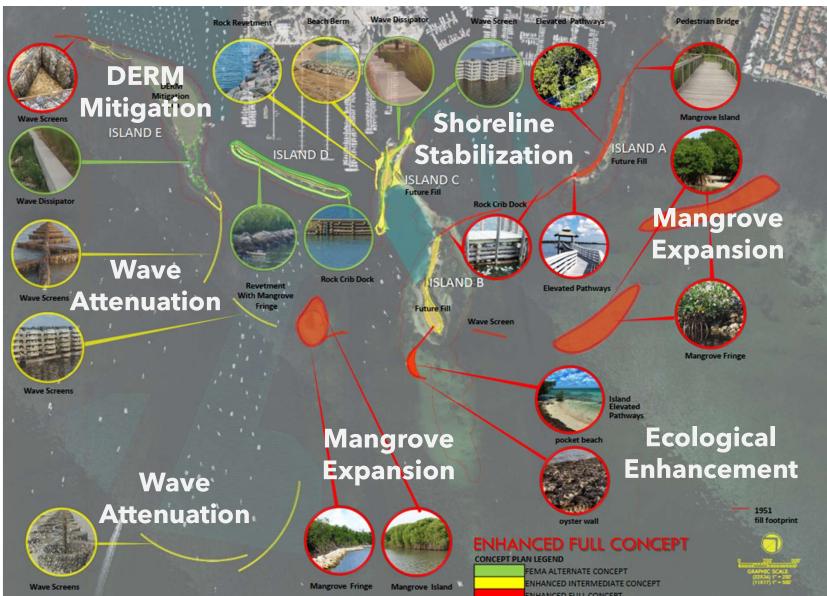

Island D mostly submerged during King Tides.

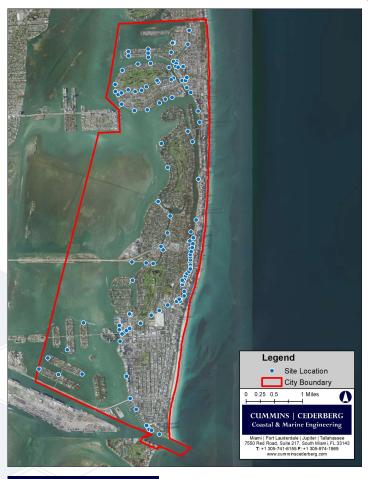
High marine traffic and recreational day users.

Project Goal: Enhance storm protection.

Dinner Key Environmental Considerations

- Islands relatively low 0 to +3 ft NAVD88
- MHHW approximately +0.2 ft NAVD88
- King Tide Elevations up to +2.2 ft NAVD88
- Surrounded by seagrasses
- Support mangrove fringe vegetation
- Contain invasive vegetation species





Miami Beach Living Shorelines

- Performed Living Shoreline Suitability Index for all 118 publicly owned shoreline segments within the City.
- Site suitability analysis / considerations:
 - Upland space, use, and functionality
 - Length of shoreline
 - Existing marine resources
 - Water depth
 - Wave exposure
 - Selected <u>10</u> for living shorelines.

Miami Beach Living Shorelines

Challenges of one site:

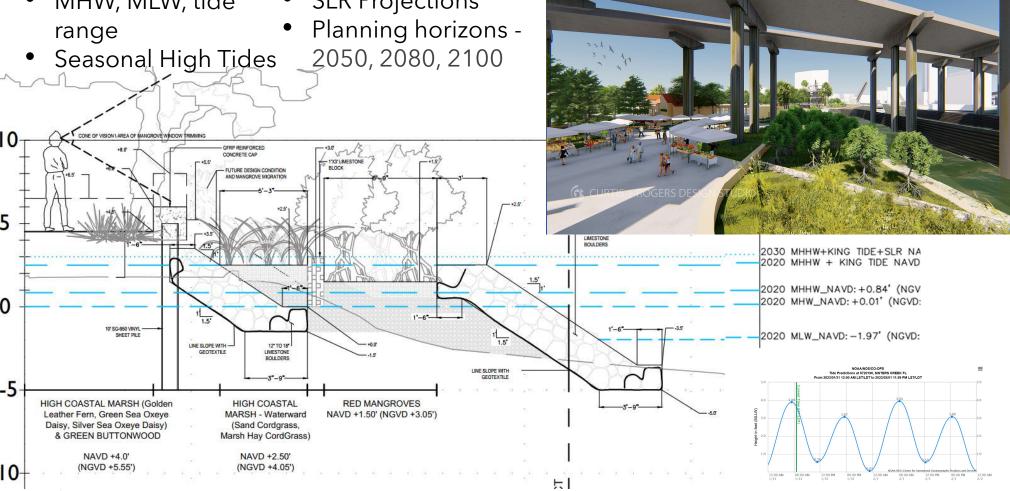
- little upland area
- along high traffic road
- busy waterway
- 600 feet of shoreline

Miami Beach Living Shorelines

Jose Marti Park Adaptive Redesign

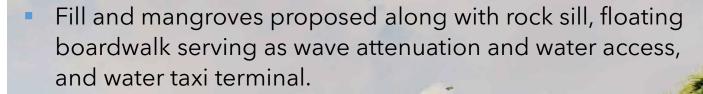
Challenges:

Miami River - Federal navigational channel - limited space.

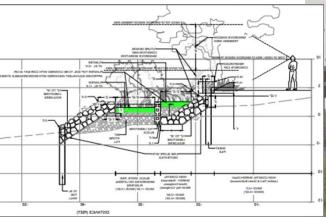

King Tides and SLR frequent flooding.

Jose Marti - Water Levels

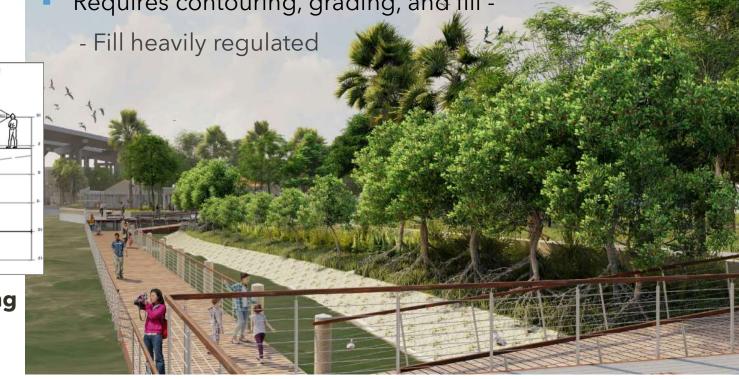
CUMMINS | CEDERBERG Coastal & Marine Engineering


MHW, MLW, tide range

SLR Projections



Jose Marti Park Adaptive Redesign


- Using layered natural design approach.
- Mangroves, marsh grass, button woods.

Requires contouring, grading, and fill -

100% Design / Permitting

Currie Park Funding Strategy

TOTAL GRANT FUNDING AWARDED

\$23,838,606

FLORIDA

CUMMINS | CEDERBERG Coastal & Marine Engineering

\$923,996

Florida Department of State **Cultural Facilities Grant**

· Site lighting in the Currie Park Performance Area

\$400,000

Florida Inland Navigation District Waterway Assistance Program

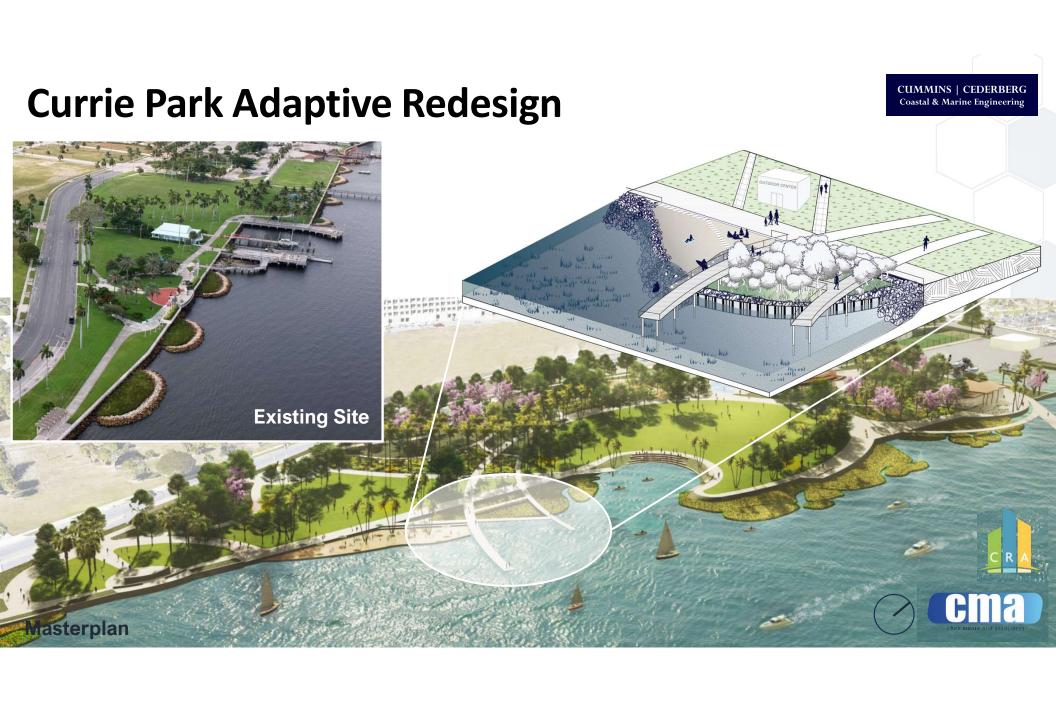
- · Final Engineering & Construction Specifications
- Permitting

\$16,764,610

Florida Commerce Community Development -**Block Grant-Mitigation**

- Elevation raising Rock Revetments.
- Living Shoreline Planters
- Landscaping & irrigation
- Water sampling
- · Seawall refurbishment
- · Mangrove reef wall planters or green infrastructure
- · Resilience Hub
- · Stormwater Pipe, Baffle
- Box, Outfall Pipe

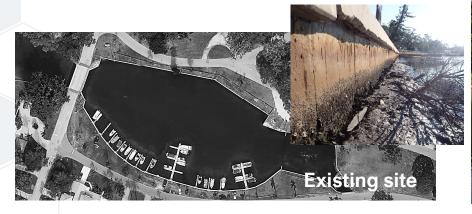
\$2,000,000


Florida Commerce Community Development Protection Land and Water Conservation Fund

- New playground
- · Kayak/Canoe Launch Facility
- · Performance/Event · Waterfront Trails
- · Renovation of fishing · Installation of new
- Waterfront Picnic
- Parking area
 - landscaping and site

\$3,750,000

Florida Department of Environmental Protection Resilient Florida Grant


- Drainage
- Improvements
- Natural Stormwater improvement
- · Seawall Construction
- · Hardscape and
- landscaping

Portosueno Park Living Shoreline

- Manatee County Park
- Connects to Palma Sola Bay
- Removal of 1960's era deteriorating bulkhead
- Relatively low energy within basin
- Features include pedestrian path, boardwalk, vegetated planters, mangroves, and natural shoreline
- Increases resilience to sea level rise

Key Takeaways

- Recognize resilient shorelines and additional first lines of defense including back bay areas.
- Define clear project goals with co-benefits, add NBS where possible (leverage funding opportunities)
- ID competing constraints (upland space, natural resources, etc)
- Consider future conditions as part of design
- Don't box yourself in Be Creative!
- Use innovative, layered design and strategic permitting approach/team.